On nonisomorphic Room squares

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Secret Sharing Schemes Based on Room Squares

In this paper, we describe secret sharing schemes. We discuss Room squares and their critical sets. We propose a model of secret sharing based on critical sets of Room squares.

متن کامل

Nonisomorphic Verdier Octahedra on the Same Base

0 Introduction 7 0.1 Is being a 3-triangle characterised by 2-triangles? . . . . . . . . . . . . . . . . . . . 7 0.2 Is being an n-triangle characterised by (n− 1)-triangles? . . . . . . . . . . . . . . . 8 0.3 An appendix on transport of structure . . . . . . . . . . . . . . . . . . . . . . . . . 9 0.4 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 ...

متن کامل

Perfect Secret Sharing Schemes from Room Squares

Secret sharing schemes are one of the most important primitives in distributed systems In perfect secret sharing schemes collabo ration between unauthorised participants cannot reduce their uncer tainty about the secret This paper presents a perfect secret sharing scheme arising from critical sets of Room squares

متن کامل

An Example of Two Nonisomorphic Countable Ordered Abelian Groups with Isomorphic Lexicographical Squares

If M and Nare ordered groups, we denote by Mx N the group MxNequipped with the lexicographical order: (a,b) < (a',b') if and only if a < a' or {a = a' and b < b'). In [1], A. L. S. Corner gives an example of two countable abelian groups A, G such that G and A x A x G are isomorphic while G and A x G are not isomorphic; he also gives an example of two nonisomorphic countable abelian groups G, H ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1983

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1983-0706536-8